Light Rain

Back to Home

Vertical lines of color fall softly, resembling the delicate, shimmering appearance of light rain

Light Rain

Technical Implementation

This piece was inspired by Marius Watz’s Blocker series. The code draws semi-transparent rectangles with colors and positions determined by Perlin noise. The final color palette is a blend from separate noise patterns.

library(ambient)
library(viridis)

# create a blank canvas
width <- 2000
height <- 1000
img1 <- matrix(0, nrow = height, ncol = width)
img2 <- matrix(0, nrow = height, ncol = width)

# generate perlin noise
noise <- noise_perlin(c(height, width), frequency = 0.05)

# function to draw a random vertical rectangle with a specified color map
draw_rectangle <- function(img1, img2, noise) {
    
    # generate random position, width, and height
    x <- sample(1:width, 1)
    w <- sample(1:10, 1)
    
    y <- round(sample(1:height, 1) + rnorm(1, sd=5)) + 1
    h <- sample(1:150, 1)
    
    x0 <- max(1, x-w)
    x1 <- min(x+w, width)    
    y0 <- max(1, y-h)
    y1 <- min(y+h, height)
    
    # get the average noise value within the rectangle
    noise_value <- mean(noise[y0:y1, x0:x1])
    
    # map the noise value to a color index
    color_index <- round(noise_value * 255) + 200
    
    # calculate the opacity based on the area (smaller rectangles have higher opacity)
    if (runif(1) > 0.1)
        opacity <- 1 - exp(-(h + w) / 100)
    else
        opacity <- exp(-(h + w) / 1000)
    
    # create a semi-transparent rectangle with the corresponding color
    rect <- opacity * matrix(color_index, nrow=y1-y0+1, ncol=x1-x0+1)
    
    # randomly select the color map for the rectangle
    if (runif(1) < 0.5) {
        img1[y0:y1, x0:x1] <- (1 - opacity) * img1[y0:y1, x0:x1] + opacity * rect
    } else {
        img2[y0:y1, x0:x1] <- (1 - opacity) * img2[y0:y1, x0:x1] + opacity * rect
    }
    
    return(list(img1, img2))
}

# generate the images by drawing multiple rectangles
set.seed(123)
for (i in 1:750) {
    result <- draw_rectangle(img1, img2, noise)
    img1 <- result[[1]]
    img2 <- result[[2]]
}

for (palettes in list(c(turbo, mako), c(viridis, inferno), c(mako, viridis))) {

    # apply the first color palette to img1
    img_color1 <- col2rgb(palettes[[1]](256)[round(img1) + 1]) / 255
    dim(img_color1) <- c(3, dim(img1))
    
    # apply the second color palette to img2
    img_color2 <- col2rgb(palettes[[2]](256)[round(img2) + 1]) / 255
    dim(img_color2) <- c(3, dim(img2))
    
    # combine the two color-mapped images
    blend_weight <- 0.5
    img_blended <- pmin(blend_weight * img_color1 + (1 - blend_weight) * img_color2, 1.0)
    img_blended <- round(img_blended/0.2)*0.2
    
    # display the combined image
    par(mar = c(0, 0, 0, 0), oma=c(0, 0, 0, 0))
    plot(0, 0, type = "n", xlim = c(0, 1), ylim = c(0, 1), xaxt = "n", yaxt = "n", ann=F, axes=F)
    rasterImage(aperm(img_blended, perm=c(2, 3, 1)), 0, 0, 1, 1)    
}